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The dynamics of the transition from supercooled liquid to glass is examined in terms of several probes:
ergodic measures, self-diffusion coefficients, the Van Hove self-correlation functions, and the shear
viscosity. Constant-pressure molecular-dynamics calculations at several temperatures are performed for
a Lennard-Jones mixture and binary mixtures of soft spheres. The temperature dependence of the ergo-
dicity diffusion parameters for both systems follow the Vogel-Fulcher law. On the other hand, the self-
diffusion coefficients exhibit Arrhenius behavior for the soft-sphere system, but Vogel-Fulcher behavior
for the Lennard-Jones system. These observations suggest that loss of effective ergodicity may be the
universal feature of glass-forming substances. Various probes of the dynamics of the mixtures studied
here suggest that the mechanism for mass transport dramatically changes from a simple diffusive process
to one that involves activated transitions. The temperature at which this occurs is higher than the glass
transition temperature T, and lies in the range 1.1 < T /T, <1.3. In this temperature range the effective
ergodic times also increase very rapidly and suggest that the relaxation process is dominated by the pres-
ence of barriers in configuration space. We also show that the Stokes-Einstein relation between the
shear viscosity and the self-diffusion coefficients starts to break down in the temperature range where the
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ergodic convergence times increase dramatically.

PACS number(s): 61.20.Ja, 61.43.Fs, 05.90.+m

I. INTRODUCTION

The mechanism for the dramatic increase in the viscos-
ity as the temperature is lowered is not precisely known
even for the simplest glass-forming substances. It has
been difficult to identify the key characteristics of glassy
materials that are largely independent of the intermolecu-
lar potential. The classification of glasses by Angell into
“fragile” and ‘“‘strong” has helped sharpen the question
for theoretical approaches to glasses [1]. The models
studied in this article are examples of “fragile” glasses,
objects with two salient features. The first feature is a
significant drop in the specific heat at constant pressure
Cp as the temperature T approaches the glass transition
temperature T,. The second feature is that the tempera-
ture dependence of the viscosity, 7,(T), clearly exhibits
non-Arrhenius behavior at low enough temperatures and
is often fitted by the celebrated Vogel-Fulcher functional
form [2]. In a recent letter we argued that the “‘universal
features” (ones that are independent of the precise inter-
molecular potential) of glass-forming substances can be
understood in terms of loss in ergodicity as the degree of
supercooling increases [3]. As a consequence the system
is unable to overcome potential-energy barriers to
diffusion on the time scale of observation. It is the pur-
pose of this article to further develop and substantiate
this idea. In addition, we provide arguments to show
that the onset of a dramatic increase in the time scale
needed for effective ergodicity to obtain is correlated with
the change in the mechanism for single-particle diffusion.

One of the important recent discoveries about the
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strongly supercooled state of fluids characterized as
fragile-glass formers is the presence of a dynamical tran-
sition which occurs at a temperature well above the labo-
ratory glass transition temperature [4]. It is thought that
this transition may be the physically significant, thermo-
dynamic feature of the supercooled liquid, while the glass
transition, which is known to depend on the way the state
is prepared, is of less fundamental significance. This
dynamical transition is thought to mark a change in the
short-time translational motion of the molecules from
small, continuous displacements to large, hopping steps
which are separated by time intervals large compared
with the duration of the step. In this picture, the transi-
tion is associated with the short-time localization of the
particles rather than the freezing in of positions which
occurs at the glass transition.

In contrast to the short-time localization of particles in
a certain region of configuration space described above,
the localization of the system in a potential-energy well
for the system as a whole is the cause for certain thermo-
dynamic properties, such as the decrease in the specific
heat and changes in the nature of structural relaxation.
In a microcanonical ensemble when the total energy E is
greater than the characteristic barrier height Ejp, the
potential-energy-barrier picture is irrelevant and particle
diffusion proceeded by the usual small displacement steps
characteristic of Brownian motion. However, when the
energy decreases to Ep the system encounters potential
barriers of varying height. In this case it is useful to
think in terms of ‘“localization” of the system in a partic-
ular well for some time followed by an activated transi-
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tion (probably involving a significant change in the posi-
tions of several particles) to a “neighboring” potential
minimum.

This picture was proposed sometime ago by Goldstein
[5], who argued that the slow structural relaxation pro-
cess leading to the large viscosity in glassy states of
matter is due to the existence of potential-energy barriers
that are large compared to the thermal energy. Fluctua-
tions, admittedly rare, must overcome these barriers for
viscous flow to occur. Thus at low enough temperatures
the system is essentially in a metastable well and is unable
to make transitions to more favorable arrangements, at
least on the time scale of observations. The duration of
this localization condition is clearly dependent on the
temperature. However, Goldstein estimated that it is
meaningful to think about the process of localization in a
specific well as soon as the relaxation time approaches
about 10~ 7 s. In this spirit, one might argue that the sys-
tem is basically localized in the metastable well for a time
interval tz =~Tyexp(Ep /kpT), where 7, is a microscopic
time ~107!2 s, Ep is the typical barrier height, T is the
temperature, and kjp is the Boltzmann constant. If the
observation time scale is much less than ¢z, which hap-
pens for T = T,, then there is a breakdown of effective er-
godicity.

Although this phenomenon of localization in a single
potential-energy minimum does not readily lead to a
theory of the liquid-to-glass transition, it offers useful in-
sight into the topography of the potential-energy surface
explored by glassy states. The basic notion of localiza-
tion has already been used by Jonsson and Andersen [6]
to rationalize the drop in heat capacity found in their
computer simulations of binary mixtures of Lennard-
Jones particles. In addition, recently van Megan, Under-
wood, and Pusey [7] have argued that the glass transition
in “hard-sphere” colloidal glasses results in the localiza-
tion of particles in an extremely long-lived metastable
well. They have shown, using light-scattering experi-
ments on polymethylmethacrylate particles dispersed in
mixtures of decalin and carbon disulfide, that the onset of
localization occurs over a narrow range of concentration
of the particles.

In this study we attempt to distinguish between the
particle localization in regions of configuration space that
occurs near the dynamical transition temperature and the
trapping of the system, at temperatures close to the glass
transition temperature, in a long-lived, metastable free-
energy minimum. It has long been appreciated that the
loss of effective ergodicity is the general feature associat-
ed with the glass transition [8]. A system is said to be
effectively ergodic if for a given time interval the system
has equivalent time-averaged and ensemble-averaged
properties [8,9]. As the glass transition is approached,
the time interval necessary for effective ergodicity to be
established increases rapidly and can become longer than
the time available for observation. For the cases con-
sidered here the time available is the duration of a
molecular-dynamics simulation. In this paper we use the
energy-fluctuation metric introduced earlier [10,11] to
determine the temperature dependence of the time inter-
val needed to establish effective ergodicity of time aver-

ages for strongly supercooled Lennard-Jones mixtures
and for the corresponding soft-sphere mixture. This is an
extension of earlier work on a soft-sphere fluid [12,13]
and shows that those results are not restricted to purely
repulsive systems. We also examine the stress-fluctuation
metric and compare the effective time interval estimates
based on that metric with those based on the energy fluc-
tuation metric.

The rest of the paper is organized as follows. The
models examined and the definition of the energy-
fluctuation metric are discussed in Sec. II. The ergodic
convergence times, self-diffusion coefficients, and van
Hove self-correlation functions are reported in Secs. III
and IV. A portion of these results has been reported else-
where [3,13]. Some concluding remarks based on these
results are contained in Sec. V.

II. MODELS AND SIMULATION DETAILS

We have used the constant-pressure molecular-
dynamics computer-simulation method with periodic
boundary conditions [14] to examine the properties of a
Lennard-Jones mixture and a mixture of soft spheres.
The models are defined in terms of the interaction poten-
tial between a particle of type a located at position r ; and
a particle of type 3 located at position r;. The Lennard-

Jones interaction is

¢a3(rjk)=4e[(oaﬁ/rjk)12—(0a5/rjk %7, 2.1)

where 7 is the distance between sites r; and r,. The
soft-sphere interaction is

¢a3( ¥k ):E(Uaﬁ/rjk )1/2 . (2.2)

The systems consist of N, particles of type 1 with di-
ameter 0,;,=0.80,, and N, particles of type 2 with unit
diameter 0,,=1. The cross-interaction diameter
01,=0.90,,. The energy parameter ¢ is taken to have
unit value. The mass of the type-2 particles is m, =1 and
the mass of the type 1 particles is taken to be
m;=0.9m,. The unit of time is 7=[m,03,/e]'/2%. The
temperature is taken to be 2 the mean kinetic energy per
particle and is expressed in units of € /kg, where kjp is the
Boltzmann constant. For the soft-sphere system the state
of the system can be conveniently expressed in terms of
an effective coupling constant I'=n*(0g/0,,)* /(T*)74.
Here n*=No3,/V, V is the volume of the system,
N=N,+N,, and 0.4 is the one-fluid van der Waals
equivalent diameter [15,16].

For most of the simulations considered here we took
N;=400 and N, =100 so that the composition variable
X=N,/N=0.8. For the computation of the viscosity we
took N; =81 and N, =27 so that X =0.75. The smaller
system size was used to keep the total computation time
at a manageable level, as very long runs are necessary to
obtain stable results for the viscosity.

The equations of motion were integrated using an
iterated version of the Beeman algorithm [17] for the
constant shape (cubic) cell using the Rahman-Parinello
constant-pressure formulation of molecular dynamics
[14] with a time step of 0.0057. Two isobars p =5 and
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p =0 were examined for the Lennard-Jones mixture and
one isobar p =5 was examined for the soft-sphere mix-
ture. The glass transition temperature is 7, =0.49, for
the Lennard-Jones p =5 isobar, T,=0.38 for the p =0
isobar, and T,=0.08 for the soft-sphere isobar. In terms
of the coupling parameter I', the glass transition for the
soft-sphere fluid occurs near I'=1.5 [15]. The p =0 iso-
bar reaches the liquid-vapor transition at T=~1, so the
p =35 isobar was studied in order to extend the available
temperature range.

III. DYNAMIC QUANTITIES

We have examined the dynamics of the systems by
computing three types of quantities. The first involves
examining single-particle motion in terms of the self-
diffusion coefficients and the Van Hove self-correlation
functions. The self-diffusion coefficients were determined
using the Einstein relation for the mean-square displace-
ment of the particles, which states that for long times, the
self-diffusion coefficient D, determines the slope of the
mean-square displacement R2(¢) as a function of time
(a=1,2),

1 e
Ri(t)=N— S ([rja(0)—1;,(0)*) >6D,t . (3.1)
a j=1

The second quantities are the fluctuation metrics for
the energy and stress, which provide estimates of effective
ergodic convergence times. As discussed below, the Ein-
stein relation for diffusion is closely related to the
velocity-fluctuation metric. The G-fluctuation metric for
a given property G is defined in terms of time averages of
the quantity G; associated with individual particles. We
assume for the sake of notational simplicity that we have
a one-component system. The extension of our results to
multicomponent systems is straightforward [10,11]. An
important notion for this discussion is that for a system
in equilibrium, it is not possible to distinguish individual
particles of a given type in terms of averaged properties
associated with the individual particles. This is called
statistical symmetry, a feature which is quite general for
fluids [9,12].

The time average over the interval ¢ of a single-particle
property characterized by a phase function G ;18

g==['ds G (s). (3.2)
Also, let g be the average of the g;(1)’s, §=N“12jg,(t).
A measure of the extent to which statistical symmetry is
violated for a given averaging time #, namely, the G-
fluctuation metric, is defined as

1 X .
i=
For an effectively ergodic system at long times Q(z)

obeys the scaling relation
Q6(1)/Qs(0)—1/Dgt , (3.4)

where the G-metric coefficient D is a measure of the rate

of ergodic convergence. This scaling relation can be de-
rived by rewriting the definition of Q;(¢) in terms of the
time integral expression for g;(#) and invoking the
equivalence of ensemble averages and time averages over
a large enough sample for equilibrium states [10-12].
The result of this analysis is described in the Appendix.

In this paper we have considered several quantities for
G, including the total energy of the ith particle,

G,=E,=p2/2m + S ¢y (3.5)
j D
and the off-diagonal element of the stress tensor,
X P do.
G,=s,=1 . Pic (3.6)
k(=) ik dri

where x;; and y;, are the x and y components of the vec-
tor r;. We have also computed the metric with G;,=V;
the x component of the velocity of the ith particle. The
energy- and stress-fluctuation metrics have been applied
to fluids before [3,13]. The reason for considering the
various physical candidates is to establish that the
slowest relaxation process in supercooled liquids is asso-
ciated with the difficulty in locating the bottleneck in
configuration space which separates local energy minima.
If the loss in ergodicity is the key issue in supercooled
liquids near the glassy states, then it is necessary to
demonstrate that other processes are in fact rapid com-
pared to the time scales needed for effective ergodicity to
be established (i.e., Dy < Dyg).

We have argued in our earlier papers that the time be-
havior of Q(¢) allows us to infer if the system is local-
ized in a free-energy well [9,11]. In particular, using a
combination of Q(¢), which involves a single trajectory,
and the energy metric, which compares two distinct tra-
jectories, we showed that if the long-time value of
Qg ()70, then this implies that the system is localized in
a specific free-energy well. This should be distinguished
from the localization of particles in specific regions of
configuration space. The latter can in fact be examined
by studying the time dependence of the mean-square dis-
placement or the velocity-fluctuation metric Q,(¢). A
precise connection between the two can be made easily.
The velocity metric is defined using Eq. (3.3) and the
time-averaged values of the velocities of the individual
particles.

Since V,;(¢)=dX;(z)/dt is the time rate of change of
the x coordinate X; of particle j, the time average of the
x component of the velocity of particle j can also be writ-
ten as

t

v;(2)= (3.7)
and therefore, with the assumption that the total momen-
tum of the system is zero, namely, that 7 =0, it follows
that

N

S [X;(0—X;(0)])

1 ji=1
— . 3.8
~ = (3.8)

Q)=
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This shows that the velocity fluctuation metric is related
to the mean-square displacement by t2Q,(¢)=R?%(z). If
the particles are free to diffuse, the numerator of Eq. (3.8)
goes as 2D .t for long times and Q(t)—1/D,t. How-
ever, if the particles are localized, the numerator will be
bounded rather than increasing linearly with time and
Q,(t)—1/t% Thus Q,(t) contains the same information
contained in R*(1), Eq. (3.1). It can be shown that
Dy,=kgT /D m, which implies that the time required
for the velocities to equilibrate decreases as the degree of
supercooling increases. This seemingly counterintuitive
result is due to the increased efficiency in the exchange of
momentum in the jammed state. When D, vanishes,
this relation ceases to be valid. Some properties of the
fluctuation metrics are discussed further in the Appendix.

Also, this argument can be used to show that the
force-fluctuation metric will always approach zero as
1/t? for long times. To demonstrate this one need only
repeat the argument associated with Eqgs. (3.7) and (3.8)
using the x component of the force on particle j, F,;(?),
in place of V,;(z), f;(t), the time average of the x com-
ponent of the force on particle j, in place of the v;(¢), and
V,;(t) in place of X;. The result is

N

S [V (D—V,;(0)]
1=
N 12

Qp(t)= (3.9)
Because the velocity moments are always localized in ve-
locity space, the force-fluctuation metric will go as 1/t2
for all states. The time required to reach this long-time-
limiting behavior is determined by the relatively short
time required to sample velocity space. Consequently,
for systems interacting via simple pair potentials, the
force-fluctuation metric proves to be uninteresting.

The hallmark of glasses is the dramatic increase in the
shear viscosity as the temperature is lowered. A direct
estimate of 7, from computer simulation is difficult due
to the nature of the averaging required and due to the
long relaxation times involved [18]. We have calculated
n, as a function of T with p =5 for the Lennard-Jones
mixture with X =0.75 and N =108. We used the Ein-
stein relation [19], which states for long times that

N ' a
s J s o)

j=

n d 2
= 2kBT§?< ) , (3.10)

where o} is the off-diagonal part of the stress tensor.
This transport coefficient, which involves many-particle
correlations instead of only single-particle correlations, is
the third type of quantity calculated.

IV. RESULTS

A. Ergodicity coefficients D and Dg

The simulations were performed at several tempera-
tures at constant pressure for a Lennard-Jones mixture
and for a two-component soft-sphere mixture. The fluc-
tuation metrics for the off-diagonal stress and for the en-
ergy were calculated and the corresponding coefficient

Dg (G =E or S) were obtained from the long-time behav-
ior of Q;(t). The temperature dependence of Dy and Dg
is displayed in Fig. 1. The main part of Fig. 1 is for the
Lennard-Jones mixture at a pressure p =5. Inset (a) is
for the p =0 Lennard-Jones case and inset (b) is for the
soft-sphere mixture.

There are two principal comments about these results
that are worth making: (i) At all temperatures Dg > Dy,
which implies that the relaxation of local stresses takes
place more rapidly than does the exploration of available
configuration space, the process probed by the energy-
fluctuation metric [11]. For the Lennard-Jones mixture,
Dy is considerably larger than Dg. The difference is less
pronounced for the soft-sphere mixture. This suggests
that the slowest process is associated with the ability of
the system to overcome barriers in configuration space.
(ii) It is also clear that the Arrhenius form cannot fit the
temperature dependence of Dy and Dg over the entire
temperature range. We examined power-law representa-
tions of these coefficients of the form D =a(T —T,)"
The Vogel-Fulcher representation provides a more uni-
form set of parameters than does the power law, so we do
not consider that representation further. We have previ-
ously shown [3] that our data for Dy can be adequately
fitted by the Vogel-Fulcher form and we find this to be
the case for Dg as well, i.e.,

Dg=Agexp[—B; /(T —T,)], (4.1)

where the subscript G can be either E or S. In Fig. 1 the
symbols indicate the computed values and the solid line is
a Vogel-Fulcher representation of the computed values.
The Vogel-Fulcher parameters were determined by first
finding a value for T such that a semilog plot of D vs
1/(T —T,) was linear. Next, the slope of that plot pro-

DT

1/ T (units of kg/€)

FIG. 1. The fluctuation metric coefficients Dy (circles) and
Dg (squares) as a function of 1/T are displayed in the main
figure for the Lennard-Jones mixture with p =5. The results for
the p =0 mixture are displayed in insert (a) and those for the
soft-sphere mixture are displayed in insert (b). The lines are the
Vogel-Fulcher fits to the computed values using the parameters
from Table II. Similar behavior is found for the type-2 parti-
cles, which is not shown here.
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TABLE I. The Vogel-Fulcher parameters for the fluctuation metric coefficients Dy and Dy are listed

for the three isobars examined.

Isobar AgT Bg(e/kg) AsT Bg(e/kg) To(e/kg)
Lennard-Jones, p =5 12.37 1.550 95.0 1.54 0.29
Lennard-Jones, p =0 3.22 1.017 73.0 1.15 0.21
Soft-sphere, p =5 50.4 0.469 86.3 0.54 0.03

vides a value for B and the value of 4 was obtained from
the intercept of that plot. A common value of T, was
used for Dy and Dg. The values of the adjustable param-
eters A, B, and T, are listed in Table I. These values of
T, can be used to compute the “fragility factor,” which is
defined to be F =T, /(T,—T,) [1]. The value of F for
the soft-sphere mixture is 1.6, whereas it is 2.5 for the
Lennard-Jones mixture. The difference between these
values of F helps us rationalize the distinct temperature
dependences of the self-diffusion coefficients in these sys-
tems, which is noted below. Because of the large cooling
rates employed in computer simulations it is easy to see
that F for computer glasses would be smaller than labora-
tory values.

It is interesting to estimate the approximate time scale
required for effective ergodic convergence to be obtained
in these systems. Figure 2 exhibits the temperature
dependence of the effective ergodic convergence time 75
obtained from the energy-fluctuation metric using the
empirical relation

£ =100/Dy , 4.2)

which was introduced earlier by us [10,12]. This empiri-
cal relation seems to give an adequate estimate for 7 for
several properties, including the time for convergence of
dipole moment fluctuations in water [20]. Equation (4.2)
is based on the interpretation that Dj is proportional to
the rate of exploration of the available configuration
space. If 75 exceeds the observation time 7., then it is

102
- 10’
2]
=
o
10°
107" —=
1.0 1.3 1.6 1.9 2.2

T/T g
FIG. 2. Ergodic convergence times [Eq. (3.1)] as functions of
T /T, for the p =5 Lennard-Jones mixture (solid line), for the
p =0 Lennard-Jones mixture (short-dashed line), and for soft-
sphere mixture (long-dashed line). These times are based on ar-
gonlike values for the units such that 7=2X10"!%s.

clear that effective ergodicity is broken. This implies that
energetically acceptable configurations belonging to dis-
tinct potential-energy minima for strongly supercooled
liquids are separated by bottlenecks in configuration
space such that the system is unable to locate these re-
gions in the time 74, Under these conditions one can
say that the system is localized in a particular energy (or
free-energy) minimum and structural relaxation can only
take place by an activated mechanism. Figure 2 shows
the dramatic increase in 7 in a relatively narrow temper-
ature range. The potential-energy-barrier picture dis-
cussed above starts to become relevant as soon as 7z =~1
ns [5], which would correspond to T'~1.5T,. Thus long
before the glass transition is approached we expect the
nature of transport to change. This is further corroborat-
ed by a detailed study of the Van Hove self-correlation
function, which is discussed below.

B. Self-diffusion coefficients

The temperature dependence of the self-diffusion
coefficients is shown in Fig. 3. Again, the results can be
represented in the Vogel-Fulcher form. The fitting pa-
rameters are shown in Table II. Note that T, for the
soft-sphere fluid is not distinguishable from zero for the
self-diffusion coefficient, while it is clearly greater than

10°
107"
~
2 2
> 10
[=}
1072
107*
0.6 0.9 1.2 1.5 1.8 2.1

17T (units of kg)

FIG. 3. The self-diffusion coefficients for type-1 particles as a
function of 1/T are displayed in the main figure for the
Lennard-Jones mixture with p =5. The results for the p =0
mixture are displayed in inset (a), and those for the soft-sphere
mixture are displayed in inset (b). The lines are the Vogel-
Fulcher fits to the computed values using the parameters from
Table II. Similar behavior is found for the type-2 particles,
which is not shown here.
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TABLE II. The Vogel-Flucher parameters for the self-diffusion coefficients D, and D, are listed for

the three isobars.

Isobar A(0*/7) B,(e/kp) A,(02/7) B,(e/kp) Tole/kg)
Lennard-Jones, p =5 0.36 1.48 0.25 1.52 0.29
Lennard-Jones, p =0 0.51 1.22 0.49 1.34 0.21
Soft-sphere, p =5 0.48 0.69 0.62 0.77 0.00

zero for the energy metric and stress metric coefficients.
The qualitative difference in the temperature dependence
of the self-diffusion coefficients of the soft-sphere and
Lennard-Jones mixtures suggests that the dynamics in
the supercooled states for these systems is quite different.
Since the interaction between the soft-sphere particles is
purely repulsive, single-particle diffusion through inter-
stices or holes can take place without significant rear-
rangement of neighboring particles if these holes can ac-
commodate the particle. For solids it is known that va-
cancy diffusion follows the Arrhenius law and this analo-
gy may indeed be useful for the soft-sphere system [21].
On the other hand, because of the tendency of the
Lennard-Jones particles to form icosahedral structures at
low temperatures [6], large length-scale fluctuations
could occur if a single particle in the cluster undergoes
significant displacement. This is a qualitative picture
that naturally accounts for the difference in the effective
barrier heights for diffusion, which in the Lennard-Jones
system is twice that for the soft-sphere mixture (see Table
II). Although this physical picture is relatively useful in
explaining the faster decrease of D; and D, for the
Lennard-Jones mixtures than for the soft-sphere mix-
tures, it does not lead to an explanation for the nonzero
values of T, for the Lennard-Jones mixture. However,
the effectively Arrhenius behavior of the self-diffusion
coefficients for the soft-spheres but not for the energy-
fluctuation metric emphasizes that the universal charac-
teristics of glass-forming substances are displayed only in
quantities that manifestly monitor the ergodicty of the
system.

C. Van Hove functions and particle localization

The ergodicity parameter Dy gives only the overall
time required for the system to explore the allowed re-
gions of configuration space in a coarse-grained sense. In
order to gain additional insight into the nature of the par-
ticle dynamics we have also computed the van Hove self-
correlation function G,(r,t), which provides a detailed
description of the motion of the individual particles of
species a. This function has been computed before for
soft-sphere mixtures [22], for a Lennard-Jones mixture
using constant-temperature molecular dynamics [23], for
a molten salt [24], and for methanol [25]. The van Hove
self-correlation function for particles of type « is

1

N(l
G (r1)= < 28(|r,»(t)—r,-(0)|—r)> : 4.3)
i=1

a

where r;(?) is the position of particle i of species a at time
t. At high temperatures it is expected to closely match

the form derived from the diffusion equation solution.
The diffusion model states that G,(r,t) is the solution to

—a—G——a—(ﬂ:DaVZGa(r,t) (4.4)
ot

with the initial condition

G,(r,0)=58(r) . (4.5)
That solution is [26]

G, (r,t)=(1/4wD ,t)*"%exp(—r?/4D ,t) (4.6)
and is normalized so that

J 4G (ndr=1. 4.7

Thus persistent deviations from the diffusive behavior
would be indicative of a change in the mechanism of
single-particle dynamics from small step diffusive motion
to a difference mechanism.

In the following discussion, the calculated values of
P (r,t)=47r?G ,(r,t), the distribution of particles of type
a which have moved a distance 7 in a time ¢, are com-
pared with the form of Eq. (4.6). The p =35 states of the

4 03 12 1
| L
[ ! [
I I |
1 ' ! Lennard-Jones, p=5
! 1
. i ,
0.45 0.55 0.65 0.75 0.85 0.95
kgT/e
| | i
4 302 1
N i
= [ T
1 I 1
| | | Lennard—Jones, p=0
1 I 1
1 L 1
0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68
kgT/e
| i i
4 1 3 i 2 I 1
1 I I
l l ;
! i i
| | | Soft—sphere, p=5
1 I 1
| I L
0.09 0.11 0.13 0.15 0.17 0.19
kgT/¢€

FIG. 4. The temperature domains for the four types of time
dependence exhibited by the Van Hove self-correlation func-
tions are shown. The circles indicate the temperatures where
the functions were constructed and the vertical dashed lines
roughly indicate the boundaries of these domains.
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FIG. 5. Typical time and space behavior of P(r,t) for the temperature domain 1. The plots on the left-hand side are for type-1
particles and those on the right-hand side are for type-2 particles. The jagged line represents the computed values with Ar =0.010,,,
and the bold solid line represents the diffusion solution, Eq. (4.6), evaluated with the calculated value of the self-diffusion coefficient
D,.

Lennard-Jones mixture are used as illustrations. Similar At high temperatures, which we indicate as region 1,
behavior of the distributions is also found for the p =0 the calculated distributions and the diffusion solution
states of the Lennard-Jones mixture and for the p =5 coincide for times ¢ > 57, the smallest time interval exam-
states of the soft-sphere mixture. There are four temper- ined. This is illustrated in Fig. 5, where these quantities
ature regions to be noted, which are identified by are displayed for both species at a temperature of
numerals in Fig. 4. It should be emphasized that the T =0.666=~1.4T,. The upper set of plots is at t =157

boundary between these regions is not meant to be sharp. and the lower set of plots is at ¢t =807.
In Figs. 5-8, the computed P,(r,?) is represented by a As the temperature is lowered the first type of devia-
solid, jagged line and the diffusion form, Eq. (4.6) evalu- tion of the computed distributions occurs at early times
ated using the computed value for the self-diffusion and for displacements of less than one particle diameter.
coefficient, is represented by a smooth, bold, solid line. This is shown in the upper part of Fig. 6 for the
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FIG. 6. Typical time and space behavior of P(r,t) for the temperature domain 2; same layout as in Fig. 5.
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FIG. 7. Typical time and space behavior of P(r,t) for the temperature domain 3; same layout as in Fig. 5.

T=0.621=1.3T, state at a time ¢ =157. The peak of
the diffusive solution is at a larger distance than the com-
puted peak. This disagreement disappears at longer
times, as shown in the lower part of Fig. 6 at the time
t =307. This we call region 2. The distinction between
regions 1 and 2 is arbitrary as it depends only on the time
interval needed for the computed values of P,(r,?) to
match the diffusion solution.

Further lowering of the temperature leads to a more
significant difference between the diffusion solution and
the computed distributions in that the number of parti-
cles which have moved a distance greater than lo is
significantly greater than the diffusive prediction. This is
shown in Fig. 7 for the T=0.575~=~1.2T, state. The
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upper set is for t =157 and the lower set is for ¢t =807.
This we call region 3, where it is evident that particle
transport does not happen by a diffusive process. In this
regime it is reasonable to suggest that single-particle dy-
namics proceeds by some sort of cooperative ‘“hopping”
process. Notice that even at T =0.575=~ 1.2T, there is
an apparent change in the dynamic mechanism for parti-
cle motion. This conclusion is consistent with several ex-
perimental observations [27] and suggests that this tem-
perature may correspond to the rounded dynamic transi-
tion predicted by mode-coupling theory [28].

There is another feature that emerges as the tempera-
ture is lowered further into region 4. A significant frac-
tion of the particles do not move very far from their ini-

P,(r.15)
[
o

.0 0.4 0.8 1.2 1.6
r/o

P2<r,90)

[e)e]

FIG. 8. Typical time and space behavior of P (r,t) for the temperature domain 4; same layout as in Fig. 5.
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tial position during the observed time interval of 1007.
This is shown in Fig. 8 for the T=0.536=~1.1T, state.
The upper set is for t =157 and the lower set is for
t =907. In this region both hopping and localization of
particles is present. Since the process of hopping neces-
sarily involves an activation barrier we expect that for
times less than the typical hopping time the particles
would be essentially localized. This localization is
different from the localization of the system in a particu-
lar energy minimum. In the former case the positions of
particles are restricted to a certain region in
configuration space. In the latter case the set of all of the
coordinates of the particles would map onto a specific
minimum. It is interesting that the change in mechanism
occurs over a narrow temperature range ~0.17,. These
observations are consistent with the dynamic light-
scattering experiments on colloidal glasses [7] in which
the onset of particle localization over a narrow density
range was demonstrated.

When the temperature is lowered still further the mo-
bility of the particles is further reduced, and eventually
no “diffusion” is observable during the 1007 observation
period. At that point, the glassy state has formed.

D. Viscosity and the Stokes-Einstein relation

The shear viscosity 77, was evaluated using Eq. (3.10).
The calculated values of the shear viscosity for the
Lennard-Jones mixture are displayed in Fig. 9 as a func-
tion of 1/T. The non-Arrhenius behavior is evident. The
solid line is a Volger-Fulcher fit with T(,=0.29 and
B =1.5, values close to those appropriate to the metrics
and the self-diffusion coefficients. At the lowest tempera-
ture where a reliable value of the viscosity could be deter-
mined, there is an indication that the Volger-Fulcher rep-
resentation is inadequate. The inset shows a power-law
representation of the viscosity,
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FIG. 9. The temperature dependence of 7, for the p =5,
X =0.75 Lennard-Jones mixture. The solid curve in the main
plot shows Vogel-Fulcher representation. The triangles indicate
the uncertainties in the calculated values of the viscosity. The
inset shows the power-law fit.

ns=a/(T——Tg)" s (4.8)

with @ =1.0 and x =2. This power-law form provides a
better fit for the viscosity than it did for the metric and
self-diffusion coefficients. The uncertainty in the comput-
ed value of the viscosity for 7 <0.55 is large enough that
the deviation from power-law behavior at low tempera-
ture cannot be excluded. The power law obtained for 7;,
valid for 7> 0.55, is in good accord with the predictions
of mode-coupling theory [28,29].

The viscosity and self-diffusion results can be used to
check the validity of the Stokes-Einstein relation,
D,=kyT/27wn,d,, where d, is the Stokes diameter for
particles of type a=1,2 and is nearly independent of tem-
perature for liquids [30]. The quantity n,D, /T is plotted
in Fig. 10. For temperatures greater than about 0.7, it is
effectively independent of temperature but at lower tem-
peratures it increases rapidly. This indicates a change in
the diffusion and/or viscosity mechanisms. For the
strongly supercooled states, the viscosity increases more
rapidly than the self-diffusion coefficient decreases, be-
havior that leads to a decreasing Stokes diameter.
Among other things, the breakdown of the Stokes-
Einstein relation implies that the Stokes diameter is not
to be identified with a correlation length which increases
as the glass transition is approached. The origin of this
temperature variation is not known and warrants further
study. It may be another indication of the “dynamical
transition” discussed above. it is interesting to note that
the temperature where the Stokes-Einstein relation fails is
roughly 1.3Tg, a value which is consistent with the esti-
mates for change in the mechanisms for structural relaxa-
tion based on the study of Dy and the dynamics of the
Van Hove function. Similar behavior of the self-diffusion
coefficients and the viscosity have been found in a soft-
sphere mixture [31] and in data for fragile-glass formers
[32].

ns0/T
o o o o o o o o o o o o o

FIG. 10. The temperature dependence of 7D /T for the
p =35 Lennard-Jones mixture with X =0.75.
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V. CONCLUSIONS

In this paper we have presented results of extensive
constant-pressure simulations for a Lennard-Jones mix-
ture and for binary soft-sphere alloys. We have comput-
ed several quantities pertaining to transport in super-
cooled liquids, namely, the self-diffusion coefficients, the
shear viscosity, the Van Hove self-correlation function,
and the ergodic convergence parameters Dy and Dg. We
conclude this paper with the following remarks.

The time variation of quantities such as the energy-
fluctuation metric and the energy metric [9] is a useful
probe of localization of the system in a free-energy well.
In particular, if the long-time behavior of Q(#)70, then
one can conclude that the system is effectively trapped in
a particular free-energy minimum for times on the order
of Dz !. On the other hand, localization of particles in a
region of configuration space is better examined by study-
ing the Van Hove self-correlation function. This distinc-
tion, brought out by this study, is important because even
if the system is localized in a given free-energy minimum,
there are examples, such as superionic conductors [33],
where single-particle diffusive motion exists.

The temperature dependence of the self-diffusion
coefficients for the soft-sphere mixtures and the
Lennard-Jones system show distinctly different behavior.
For the soft-sphere system, D; and D, obey a simple Ar-
rhenius law, whereas for the Lennard-Jones mixtures
these coefficients show clear deviations from a simple ac-
tivated expression and are better represented by a Vogel-
Fulcher law. On the other hand, the ergodic convergence
coefficients for both types of mixtures exhibit non-
Arrhenius behavior. The potential-energy-barrier picture
of Goldstein appeals to general, universal notions about
the energy landscape. Thus any quantity that gives an in-
dication of the dynamics of exploration in this complex
energy profile should exhibit universal behavior as long as
the statistical characteristics of this profile are similar.
The parameter D ! sets the time scale for adequate sam-
pling of the configurations belonging to distinct minima.
The similarity in the behavior of Dy for both systems
suggests that the key mechanisms for slow structural re-
laxation is a dramatic rise in the ergodicity time scale.
This feature leads us to conclude that the loss of ergodici-
ty, brought about by the presence of bottlenecks with a
distribution of barrier heights in the complex potential-
energy surface, is the fundamental controlling feature for
relaxation in glassy systems. This argument is further
buttressed by noting that the time scale for other physical
quantities is shorter than that for the energy.

The results presented here also dramatically show the
failure of the Stokes-Einstein relation in highly super-
cooled liquids near the glass transition. This has been ob-
served before by analyzing NMR data on organic and
inorganic glass formers [32]. It has been argued that the
temperature range where the Stokes-Einstein relation
starts to fail is indicative of a change in the diffusion
mechanism, an interpretation consistent with ours. This
temperature range is typically well above the glass transi-
tion temperature. The analysis of the various dynamical
quantities lead us to suggest that this crossover region is

roughly 1.17,-1.3T,. The nature of the failure of the
Stokes-Einstein relation excludes it, or equivalent state-
ments, from identifying the Stokes diameter with a grow-
ing correlation length in glass-forming substances. We
have come to similar conclusions using the ergodicity
time 7 in the expression

E~(kyTTg /)" (5.1)

for an effective correlation length. Instead, it may be
necessary to explicitly introduce quantities which are spa-
tially distributed [34].

It is heartening to note that in all the fits of the various
quantities the values of T, are basically the same and
only depend on the pressure. This suggests a robustness
about the existence of an ideal glass transition even
though kinetic considerations prevent simulations from
actually probing the dynamics near 7,. By combining
our results with the notion of entropically driven transi-
tions it is possible in principle to identify a diverging
correlation length £ near T=T,. Since the cooling rate
are extraordinarily high in computer simulations, the
quantity ¢t =(T —T,)/T, is quite large at the kinetic
glass transition temperature. For our cases the value of
t,=(T,—T,)/T, ranges from 0.7 to 2.0, which implies
that the value of £ is at best of the order of 2-3 molecular
diameters. Thus at present it is not possible to probe the
divergence of £ (~t ™", v=2/d) [34,35] using computer
simulations. This explains the failure to find a diverging
correlation length in computer simulations of glasses
[36].
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APPENDIX

The general form of the fluctuation metric for a quanti-
ty G is

06(1)/06(0)= 27,1 —(1/07,(1)], (A1)
where

To(t)= fO‘ds Cg(s) (A2)
and

Iy(1)= fo’ds sCq(s) . (A3)

The time correlation of the individual particle fluctua-
tions in G, C;(t), is normalized to unity at ¢t =0.

There are three types of long-time behavior for the
metrics of condensed-matter systems which are in sta-
tionary, but not necessarily thermodynamic equilibrium,
states. The first type of long-time behavior, which we la-
bel I, applies to systems which are ergodic. For case I,

Qg (1)/Q5(0)— (A4)

Dgt ’



47 ACTIVATED DYNAMICS, LOSS OF ERGODICITY, AND. .. 489

where D is proportional to the reciprocal of the time in-
tegral of the single-particle fluctuation correlation func-
tion.

The second type of behavior, which we label 11, applies
to systems for which the time integral of the single-
particle fluctuation correlation function does not reach a
limiting value for long times. This occurs if the time
correlation function does not decay to zero, but instead
reaches a finite, long-time value. In this case, Jy(¢) is
proportional to t for long times and Q4;(¢)/Q;(0) ap-
proaches a constant, nonzero value for long times. This
is what happens with the energy-fluctuation metric in a
glassy state.

The third type of behavior, which we label III, occurs
for variables for which J(?) is zero for long times. (This
is the case called an ‘“oscillatory variable” by Rahman
[37].) Then Qg;(¢)/Q4(0) is proportional to 1/¢2 for long
times with the constant of proportionality being —2.7,(¢),
which approaches a positive constant for long times.

The types of time dependence exhibited by metrics as a

function of supercooling depends on the type of variable
being considered. The energy metric exhibits type-I be-
havior for fluid states and type-II for glassy states. The
velocity metric on the other hand exhibits type-I behav-
ior for fluid states but type-III behavior for glassy states.
The force fluctuation metric exhibits only type-1II behav-
ior.

It is worth emphasizing that the velocity and energy
are inherently different type of variables, and thus the
time dependence of the corresponding metrics is will be
different. Consider what happens as the liquid is super-
cooled. For the energy-fluctuation metric, the magnitude
of Dy decreases rapidly, indicating that the time needed
to sample configuration space is growing rapidly. On the
other hand, the velocity-metric coefficient, Dy, < 1/D,
increases rapidly with decreasing temperature, indicating
that the time required to sample momentum space de-
creases as the mobility of the particles decreases. This re-
lation ceases to hold when D is identically zero, i.e.,
when the velocity is an oscillatory variable.
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